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THEORET ICAL MODEL FOR TURBULENT TRANSFER IN THREE-D IMEN-

SIONAL FIUID FIOW
N.I.Buleev

The aim of +his paper is to develop methods of calcu-

lating the velocity and temperature fields for turbulent
flows in the channels of arbitrary shape.

§I. Equations of turbulent motion for averaged values

Let us write the system of equations of turbulent mo-
tion of an incompressible fluid for averaged values in Car—
tesian coordinates.

Equations of motion

3 D 2 - ’Dﬁ -— 2 D ’ '
* L, [PV ]= g PO L 5 (P40 (g1

iz
the equation of conservation of mass

3 —
9D (pi)-o, (1.2)

['TE} axk
the equation of heat inflow

PTo3 2 (o] T)praT-f 22 (27T
< +é§5 ( P, T/-/DKAT—E; P (P 7) (1.3)

0t

Here U/ ; 1} ; 5 - are velocity components, 2 is the pre-
ssure, / 1is the temperature, P is the fluid density,

YV  is kinematic viscosity and K is the coefficient of
temperature conductivity. The symbol A4 f means the three-
dimensional Laplace operator. For the sake of simplicity
of writing down the equations (I.3)-(I.4) the coefficient
of viscosilty A7PV and the coefficient of heat conductivity
A<CPK , are assumed to be constant.

4¥ter the appearance of the Reynolds work [I] in
which the equations (I.I)=(I1.2) have been obtained, the
furthe™ development of tuxrbulent transfer theory procceded
2y oway of building of semiempirical models, the basis of

wiioa wes the concept of a'mixing' length" similar to one
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of the mean free path of the molecules in the kinetic the-
ory of gases ( see, for example, the survey of tis mono-
graph [ 2] )-

In the analysis of one-dimensional f£iuid flow W/x)
the Prandtl-Karman relation is widely used in practice as
a semiempiricsal approximation for the turbulent stresses
‘pu 'w' which has a form

_ - 9w
JJLIL(/' ,/75 where € - 6/0/ / (I.4)

{ being a turbulent scale ("mixing length'").

If one takes {-xx and an appropriate origin forx,
Prandtl relation for the coefficient £ ensured in many
cases a quite satisfactory solution of the hydrodynamical
problems.

The statistical theory of turbulence was developed
later ( in twenties-thirties). In spite of the serious the=
oretical successes the statistical theory could not give
a practically acceptable procedure for completing the Rey-
nolds equaticns.

In this paper an extension of the semiempirical
Prandtl-Karman theory is made to the case of an arbitrary
three-dimenthional fluid flow.

§2. Taree-dimensional model ~ turbulent transfer
in arbitrary fluld f£low

We shall consider the turbulent motion as a super-
position of irregular transient vorticities on the main
averaged motion. Every eddy which appears by chance and
then quickly disappears and which has a diameter equal,
say, to 2 { , transfers fluid lumps of { size over the dis-
tances also u, roximately equal to { .

For the sske of convenience of mathematical descrip=
tion of the momentum and heat ftransfer caused by random
motions of fluid lumps inside of transient vorticities
we shall suppose that fluid lumps fly out from the vici-
nity of every flow point M condidered in the coordinate
system that moves with the averaged flow velocity. This
flying-out takes piace in all directions with equal pro-
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bability. Introduce the notion of a linear scale of turbule-
nce L (M) which characterizes the linear size of transient
vorticities in the vicinity of a current point A of fluid
flow. We shall suppose that the characteristic "diameter"

ol of lumps which f£ly out from the vicinity of point 4
is identical to the scale L with an accuracy of a cons-
tant factor 3 :

of = BL. (2.1)
Following the idea of the local similarity we shall
suppose that the mydulus of turbulent velocity of the lump
occuring in the vicinity of M  is proportional to the modu-
lus of deformation of the velocity field of the averaged
motion in M and the characteristic scale + in this point:

2
Lf oV
{,ul/f)@-"-’/, -*—"/3“’* (2.2)

IL h,
U =

0 ’ if ——/ / L(f (203)

where o 5
v 2 / oV, D dw , 04 )/ du,
ols , '7( 2’( ??- (az o (Dx 92 oz /Dy ax

A and W are d.mensmnnless constants .*

Approximate formula for characteristic lineaxr scale L will

be done later.

Now we shall analyse the turbulent stresses C;~ LY ¢
and the turbulent heat flowsf =C/°/ 7'  in equations(I.I-I.3).
In every point M the quantities pv;y;’ and CPU 7,'are res-
pectively averaged fluxes of the momentum /Y and of the he-
agemT generated by the turbulent velocity component v

L

in the positive direction of the axis 2¢ through the unit

E"Energy equation" (2.2) is similar in its structure to
the expression for the kinetic energy dissipation per
unit mass in a laminexr fluid flow.

Approved For Release 2009/08/17 : CIA-RDP88-00904R000100100030-7 ‘



Approved For Release 2009/08/17 : CIA-RDP88-00904R00010010003-7

surface perpendicular toX; and moving with the averaged
flow velocity at A .

Consider a unit area at some point A7 inside the
flow perpendicular to the X:-direction. This surface 1is
considered to move with a velocity of the averaged motion
at M (Fig.I). Lumps from the vicinities of various flow
points can pass through this surface. At some moment t let
lump occuring in the vicinity of M pass the point Mo with
the velocity vV . If the lump moves from M to Mo without
deceleration, its velocity V would be exactly equal to an
algebraic sum of the averaged motlon velocity V at ™M and
the turbulence lump velocity V' teken in the coordinate
system moving with the averaged flow at M . The turbulence
velocity Vi(M.) at the moment of passing of the lump would
be accordingly equal to
U (Mo =V (M) cos (8o )+ [ U (M) = Vi (Mo) ], (2.8)
where ' is the direction of velocity vector V' in the
coordinate system moving with the averaged flow at M (Fig.I).

But in reality because of the interaction of the lump
with the surroundings lump velocity in the process of its
motion and therefore real turbulence velocity Ui (Ma)wn.ll be
differedfron that calculated from 2.4). Analogically at
the moment of passing of the lump thriugh A the tempera-

v ture of the lump considered will not be egual to its tempe-
rature at the origin M .
— Introduce a hypothesis about the interaction of a
‘ moving lump with the surrounding fluid. The equation for the
N momentum and heat flow variation in a moving volume are writ-
‘ ten in the following manner.

olvts 2 A1 (V- lelt, o A2 2 A0 (T-T")dlt = (2.5)

Here U-f and T# are velocity components and temperature —
in the moving volume V; and 7 are those in the surrounding = |
fluid, X is a '"radius" of the lump, associated with the

scalel(M) by the relation (2.I), A¢ and A, ere some coef-

ficients of m/sec dimensions. -

vy
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Mske in (2.5) the transition from the independent va-
riable t to the variable t representing a distance between
the moving lump and the origin , and it is in the system

moving with the mean flu_ld flow velocity at A7/ :
ot = ——7;
Then equatlons 2. 5) take the form

where e 5. __3_*_’1._
Iy = £V / ? Rv' (2-7)
Supposing the coefficients in (2.6) to be constant
and the lump trajectory from A~ to % %o be rectilinear one
can find approximaste solution of equat:.ons (2.6).
In particular, the solution forl] i t) at v:S wheres= MNo

is written as fo‘llows ,

-Ps — _ P / *
vit(s)e [ Spviede Y (o) ],
where "

V(8= v(M) cos (§) xi)+ Vi (M)
Write the velocity v: in the surrounding fluid on the way
MMo ag a linear function of the distance T . Then from
(2.8) one can find
Vi (M) =V (5 )~V ()= V(M) foco8 (S, "oei )+ (T (M) Ti(Mo)] f

-PS

Y

(2.8)

(2.9)

-A's
j/ = ,3’-‘5— [’j - e /
Analogically we obtain an expression for the temperature
fluctuation / {Ms) at the moment of passing of the lump congi-

dered through the point A/
T [Mo [T(N) T{Mo}]f&x

where , =/;f§ (1- ¢ “RS ) S (n5)
We shall suppose that the difference of the averaged flow

where fo =@

(2.10)

% The introduction of equation (2.5) is an extension of
ideas about an interaction between the _mowving lump and
the surrounding fluid, developed in[7], [8] , etc®
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velocities V(M)- ‘7(/"7’0/ at the distances Ao of the order
of the mean free path of the lump is much less than the
gbsolube value of the turbulence velocity ¥  of lump'
When we use the expressions (2.9-2.I0) we write the
expressions for the flows fV’(Mo) VU (Mo ),
PV (Mo) x Y (Ms).
which are formed at the moment of passing of the lump

from the vicinity of M through Mo as follows
PU (Mo ) Vie (Mo )= T (MMo ) =PV (M) 103 (5 260 ) Cos (50 )+

+ PV(M)fodr [V (M])- Ve (Me)[cos (s oxi) + (2.II)
+ PV (M) ot [ V(M) = (M6)T cos (s, X ),

‘PUL,(MO_)TI(M&/ =£¢‘ (N/Na/:
::\PV’(M)fof,z [7_'(/“// —7_:(/*-/0/]605 (J,Jc[),

In the expressions (2.I2-2.I2) the terms

PACE M(H'][VK(H) U(N,],/and[vm} (M,)][T (M)-T(No)] £ F.
are omitted as "small values of the higher order" and cos(s. 7,
is assumed to be equal to CO3(5 ¥k _ o

To obtain the averaged values pU; Vx- andf)lfr at Mo

it is necessary to perform the in.:; vation of the right-hand
parts of (2.II-2.I2) over the surronding volume ? with
the appropriate weight functionf(A~Mjwhich is a probability
of passing through the M¢ of the lump whose centre is
out of the unit vicinity of an arbitrary point A .

PR (Mo) =S Foe (M Mo ) (M>1e) /T 2.13)

PY T (M) = (E (MM T (MM, ) olT (2.14)
We shall assume that the motion direction spectrum of the

lumps passing throug the/Me is approximately isotropic in
S the coordinate system moving with the velocity of averaged -
fluid flow at Mo. '
We shall assume that the probability density f/N+H,)
has a form of sgpherically symmetrical normal distribution

(2.12)

__ 12¢ -5
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law with the dispersion O proportional to the turbulence
scale L at Mo . ., -4 st /
P 2
f(ﬂ'/"’/“{o/: 'Z;,]/__\S‘L VT%N dLo_e R Ll (2.15)
where Lo is the value of the scale L at A/ and is a
dimensionaless constant.

In the first approximation we shall suppose that the
turbulent scalel(M) in(2.I) and (2.I5) is identical to the
characteristic distance between M and the channel walls
and determined by »

‘Z‘}%J{ z dw (2.12)
where £ is the distance between M and the channel wall in
the direction w .

In the second approximation the scalel(M)is assumed

in =sddition to be dependent on local peculiarities of the
velocity field of “he averaged flow[4]

In the casge of the forced fluid flows in closed chan-
nels it is assumed that the approximatior. (2.16) for the
scale L is sufficient. The form of the function calculated
from (2.16) for the channels of various sections is shown
in §4. At this place we note that factor scale values L ob-
tained from (2.16) are apart from a constant in good agree-
ment with the experimental estimates of turbulence scales
( [5] ,[6] etce)

Thus, all the functions in the integral expressions
are obtained. 'The expressions (2.23) and (2.14) are general
interral formulas for the turbulent stresses tensor compo-
nent 8 and the turbulent f£low vector components.

"o simplify the use of the obtained approximations for
PV U and JDW make some further transformations for
the expressions (2.13),(2.14).

Tie difference of U; and of 7 at the points /Y and A,

iz represented ag an expans:.on along the coordinate axis.

Wi -y *—(,) / = " f )O'J‘COJ (s ) (2.17)
Wia TS ,.,’.;’ %8 2 value of ‘/L/f ;:'P- A /0 .
@.S
..7...
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Taking into account the expressions (2.2),(2.II),
(2.12) and (2.I7) the equations(2.I3),(2.I4) for pY; V. and
LV T' is written in bhe form

3 _'“"—_ . LJ OVL 3 Kd' O—
PV = Z TR R
PV T = 2 pg & DT (2.19)
where q* How /
R (Mo 417 g;;lf F (M>Mo)cos (5.2 ) cos (430 ) dIT, (2,20
v

GQ (Mo) ,(«I.SL IDM [:f fi’ S'F(M*Mv}ccﬁ(s,\Xe)Co.S (S,JQ)O T, (2.21)
£, (NO):P’,J‘-/QLY}J("J& S.L(M>Mo)cos(s,ve)cos (£,X 7 )dT. (2.22)
The summands in (2.I8) have the same structure as
Prandtl's stress in the case of plane flows. And the terms
of typec\?;n are a turbulent analog of the statical pressure
in the fluid- In the case of calculation of practically
important problems the system of the equations (I.I-I.3) and
(2.1I8-2.19) can in ewvery specific case be considerably simp-
lified if we take into account known hydrodynamical features
of the fluid flow considered and the needed accuracy for the
solution.
In particular, far from tie entrance section the equa-

tions of motion (I.I) and of heat inflow for turbulent

fluid flows in rectilinear channels . = be written after
using (2.18-2.I9) and om.].ttlng unessential terms.

-1 2P +¢ 'Dwf W
O="7 @L Dx{( g 'D& L ji)y ' (2.23)

e o1 (esg 22T 42;' L PIT
w57 ox | KHEx )fofor /'Ovj X 0(5”]'01 P (2.24)
where

E“ (MOJ :/UJ(L /:ra—b‘d}j"j: s§ (N+N0)504*(5,JJ~)C/T, (2.25)
/},J’L/"Dw/ cj(”’*NaJCOS (JX/O/T (2.26)

oW
/fam/‘ (%‘/ g %’jl

and

T2
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§3. Values of the coefficients Lt ,o , A, and A,

Determine the empirical coefficientso, £/ , AsandA,
included in the discussed model of turbulent transfer
by means of some experimental measurements of the correlati-
on moments in turbulent flow and by using other empirical

data.

. First of all to ensure the agreement between the empi-
rical date and the results of calculations according to(2.I8)
of the root-mean-square turbulent velocity and the tangen-
tial stresses in turbulent fluid flows we must assune

L1=1,3+2,8 ML =0 15 (3.1)

The mechanism of the interaction between a lump

and the surroundings, described by (2.5) is assumed to be
double. Firstly, due to the molecular diffusion the moving
lump exchanges the quantities V¥ and 7 with the surroundings-
Secondly, the moving lump which is not e solid but some
“geething fluid lump' exchanges with the surrounding fluid
by "macro-particles".

Therefore, represent the coefficients A, and A, invo-
lved in (2.5) as a sum of two terms copresponding to the
action of a molecular mechanism of quantity transfer and
to the transfer by "mecro-particles:

Ay ({3,%2}_}{-, Jq&‘gj—k's'*gq';?}' (3.2)
where 6, €,, €,, fy are dimensionaless quantities and b, , %
are nearly unities.

Following [4] one can adopt

€= %, €3=€1 ({‘)0’35 (3.3)

Taking into account (3.2-3.3) and (2.2) one may
write the arguments of functions fo, f; and fy in the form

4R0° (4, +62) 1E, Qe
S A st /wﬂo((}’ 4&)_2_](3.4)
where . Ok A

X ov K gt
iz lanl) P O3

For the sake of simplicity we shall assume and

-

Ay ' '3 . A
kD )
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to be constant. The coefficient @ which is a factor for'éi
and for 62 may be introduced into ¢ and 2 so that we shall
assume 1t to be equal unity.
Following [4] take
€=l feh (3.5)
After some trial calculations of velocity and temperature

fields for the fluid flows in a round pipe the values of
the coefficientsi/ ,« , ﬁ and.é»finally have been taken

M=48, osoud, $;:049, 6oz 38 (3.6)
The critical number 4 has been taken to be equal to 25.

§4. Results of calculations of the velocity and tempera-~
ture fields for turbulent fluid flows in rectilinear channels

The developed model of turbulent transfer is used
for celculating the velocity and temperature fields in tur-—
bulent {lows in a circular tube, in ring ard flat clearences,
in channels of rectangular section and in cells of rod lat-—
tice.

In these problems in practical solving the equations
of type (2.23) and (2.24) it i~ used some simplifications
of the expressions (2.25) and (£.26) for the coefficients
5:) and &4 . S0 the integral . r~asicns for E: andé:,I

over a lateral region‘% around svu.i ccnsidered point
are gimplified to integrals over the segment parallel to
the axis &,

Ji C oW c , | />
£l (hel-ele] o | 735,14 (3¢, G e )l
' (o )=c Lo LT £o (9301 CA93) 6. (3, el s

-/ 1
where ;{. = xlo(L il Qf_{/z.’zi/;/e /LZ, <Alo P1.

° ¢, _tggl_, Az Q8+ 0920 (&#.3)
The function L ///; in sections in infinite rectili-
near channels was calculated accoviing 4o the formula (2.I6)

which for such channels is reduced o

4 _'f HT:L
) {ea/f

() = 2 J (44)
[

~T0-
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where £/ 7/ 1s the distance between the point # and perimeteg
of the section of the channel in the direction # .

For the @¥ —wide channel (or 2¢ wide annulus) bet=
ween two pa.rallel plates the formula (4.4) gives (see [ 4:])

z . d
7 (5] 2=, .5
is a distance between A and one of the plates.

According to (4.4) it is also easy to obtain a formula for
the scalel(N)in a section of a tube of radius & :

oo 1o
a " RE(3, k)"
where € ’ ‘
3= E(q)s [Virstsin < ofX .6)

A curve for the function ! ;5‘) for a round tube is given in
Fig.2 . It is seen from Fig.2 that the mixing length { cal-
culated by Nikuradse | 5] according to the measured velocity
profiles in a tube is practically identical ( with the accu-
racy to the constant factor) to the scale L : €:04YL.

The qﬂantlty o is defined for an arbitrary channel
o g ar ) ot (4.7)
where 4, (,t)is a distance between the centre''channel" and the
wall in the direction f is called as the effective channel
radius and in the following will be used as a characteris-
tlic cross size of a channel when dimensionaless hydrodyna-—
mical characteristics are built up .

In particular, for a round tube of the radius (I one
has according to (%.7): (A ; for a flat 2 -wide annulus
one obtains & "g T ¢ ; for a channel of rectangular section
with the sidesa and 24(t<4)one has

A = _‘Z_T ab S
2 Voteer (%.8)

Figures 3 and 7 show the results of ucalculating
a mean-over-section dlmensionless velocity L= =5 17 and resis-
tance coefficient f U, for a round tube when the dimen-
sionless dynamical parameter ¢~ 7 is varied in a wide
range. Here ' is the tube radius and Y, ”f: ; 'DD.ZP

For ¢<3{(Re < 500) the solution for ( turms into

320 -I1-
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the solution for the laminar regime U=0,25 ¢

Computed velocity profiles U over the tube radius
are shown in Fig.4. It is drawn the conventional curves
U_f(iu‘/_.:) for different Reynolds number Re, where ¥ is the
distance from the wall. The picture of branching of curves
2/=f ( —%&) for different Reynolds number R represented
in Fig.4 looks like the one corresponding to the experimen-
tal data (see, for example, 9 )°

Computed profiles of turbulence viscosity &u over tube
gection at different values of Re are represented in Fig.5.
As it is seen from figures 3-5 the results of velo-

city £ield computations for tubes are in 3 good agreement
with the experimental data.

Note that in computing the velocity field ( as well
as the temperature fields in fluid with Pu < I) the conditi-
on (2.3) is found to be important, however, in computing the
temperature £ields in fluid flows with Px > I the condition
(2.3) involved decreases the computed number Nu and gives
rise to the more strongly pronounced transition of the so-
lution for Nu to a solution for a laminar flow ( for Re 400)°

Figure 6 shows the results of computations of the
number Nu for flows of different fluids in a round tube
when the condition at the tube wall is § =const where g,
ig a heat flux density. In the number Nu intervals from
3.IO5 to 3.106 the represented results of computing the
number Nu in a round tube may be described by an interpola-

tion formula
N < H#3,90 (Re-197°) 7 P2, (4.9)
where  A<25+4,3 49 ( 1+ Py,
m<0,018-0,051 €4 [ 1+ 10P"")
n=065 -0,l0% €9 (1+10P)
The computation results represented in Fig.o6 are
in rather good agreement with the experimental data both
for £luids with Pr¢I( [10],(1II] etc.) and for the fluids with

large number Pr( [IIJ, [IZ] etc.).

3179 -
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Fig.?7 shows the results of computing the resistance
coefficients f:% for annular gaps formed by two coaxial
cylinders with the radii O, and ¢, (0/ <Uy) at different valu-

es of the dynamical parameter @ - 9 Ye  ( or at different

Re 9“;;) o0
- 4 _u
where U‘RT'FIW/' U'Tf; ,
. g L) (1-2)*] (a,-a,) %)
CI: ——4—('{‘ ""/(""‘" 2 ! (4 IO)

As it is seen from Fig- 7 the curves for} f(l?e)
in annular gaps at different parameters (= cc:,, are between
the corresponding curves f-f(l?ﬁ) for the round tube and for
the flat clearance. _

When P is decreasing the solution U for a flat an-
nulus in chosen variables is approached to the formula l7=0,2¥¢

In Fig.9 an example of computing the velocity field
U(J‘. ) in a channel of rectangular section with the parameter
=% R  for arbitrary channelslf’{;; , U~ g J_E/OP/ ,¢~9VV" ,

Re= PU , f~;f.i£,- .
The results of computing the resistance coe:f‘ficient;Jf
in turbulent fluid flows in the channels of the rec-
tangular section are represented in Fig.8 at different valu-
es8 of the relation of the section size }/“ one to another.
For a given value of Reynolds number the resistance coef-
ficient ? decreases with the parameter increasing.

The results of measurements of the resistance co-
efficients ? in the channels of rectangular section are
represented in Fig8 1I5 . As follows from Fig.8 the results
of the calculations of the resistance coefficients in chan-
nels of rectangular section are in rather good agreement
with the results of the measurements-

In view of the fact that the temperature field in a
fluid flow in a channel of the rectangular section is de-
termined by a great number of parameters such as: the heat

® The formula (4.I0) is an interpolating one e

129
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source distribution , the design and the heat-conductivity
of channel walls, the number Pr for the fluid and the numbers
Re and j, it is not necessary to comstruct any generalized
characteristics of the temperature field as functions of the
numbers Re, Pr etc’

It is worth to calculate the temperature fields using
(2.24) only for a given design of heat-exchanger cell.

Give now some results of velocity and temperature
field calculations for turbulent fluid flows in rod lattices.
In Fig.I0 an example of the velocity field calculation for
the triangular array with the relative spacing h=I.2 is
given for the case of a longitudinal flowing around of this
array.

The results of the resisgtance coefficient calculations
for the triangular array as functions of Re and at the re-
lative spacing k are represented in Fig. II. N

When the characteristic cross size of the channel (b
has been taken here, the computed curves ﬁif(!?e,h)for diffe-
rent value3 of relative spacing h are in a logical sequence.
At equal values of the number Re the resistance coefficients

f{ increase with deviating the channel section shape from
the circle one.

When however one uses the hydraulic radius R' as a
defining cross-size of channel the obtained generalized de-
pendencefi‘j(Qe,' ) has no such logical regularuty.

Fig.IIl shows also the resistance coefficient calcu~-
lation results for the cell of rectangular lattice of rods
with the relative spacing K =I1.0. Here the results of, re-
sistance coefficient measurements for the cells of different

%) The values of the coefficient f for rectangular channels

computed in [15 ] using Daysler-Taylor graph-analitical
nethod are close to the values f obtained in this paper.

Ity

i T
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lattices taken from [14] and [ I}] are shown by the dotted
curves. As it is seen from Fig.Il, the resistance coeffici-
ents computed in this paper for the lattices with the rela-
tive lattice spacing h =1.0-I.2 are in satisfactory agreement
with the experimental results.

Fig.I2 shows an example of computing the dimensionless
temperature 0= J-‘L'L‘e(—l.—:elc——)— on surface of the fuel rod in the
cell of triangulara'érray with h =I.O when the fluid with

Pv =0.025 flows through this cell . The number Re is
equal to 5.IO4. Here the rod section at the circle with ra-
dius Vo =0.773.R where R is the rod radius. The problem con-
ditions here correspond to the physical ones for the expe-
riments [ I6] . In Fig.I2 the dotted line represents the re-
sults of measurements of the function O from [16] .

It is seen from Fig.I2 that the results of computing
the temperature @ for these specific conditions are in a
rather good agreement with the experimental ones.

Thus, the results of calculation of the velocity and
temperature £ields in the fluid flows in different channels
established in this paper allow to think that the later mo-
del of turbulent transfer represented may be used for com-
puting the hydraulic resistances and thermal regime in the
cells of heat—exchanger of arbitrary desigh.

-I5-
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Fig.2 Comparison of the fun=
ction L and € for the circu-
lar pipe

Fige3_The mean velo-
city Vv vs the a=
mical parametegzg
for circular pipe
I-compound curve,
2-experimental curve
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L

A

T

Fig.4 Computed velocity

profilesV(y/in a circular
pipe at different values
of number Re .

I-5 corgespond ko Re= 5
=6.9.Io' 3.4OIO'I.6.IO [}

5.2.10°,
Dotted curve corresponds

to Prandtl solﬁu}}z}on:
v=55+515 €9 5

) ny‘u_.

Fig.5 Computed turbulent
viscosities Iy in pipe fluid
flow I-4 correspond to

Re= 6.95103’3.4.10‘*, 1.6.10°
7.3.10”.
Dotted curve correspond_to

the experimental data(5
for Re:IOélll IOgJ-' [

Fig.6 Computed numbers
of Nu for fluid flows
in circular pipe.

I-Pr=0.010,2-Pr=0.025,
3-Pr=I1.0, 4-Pr=I0,
5-Pr=100.
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Fig.7 Computed resistance coefficients ¥ for ring and f£lat
clearances. I-circular pipe (©=0 ) , 2-ring clearance
with © =0.5; 3-clearance with © =0.8-I.0;

-~ « - = experimental data for circular pipe.

Fig.8 Computed resistance coefficients 3 for the channels of
rectangular section. I-2 correspond to | =I and & =5.
flat clearance; 4,5- are the measurement results [I5]
for Y =I and (:59-10.

N Fig. 9 Computed velocity field‘f("f) in chennels of rectangular =

- 19 - ,
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Fig.I0 Gompu’itzed veloci-
ty fieldV{nfifor the
cell of triangular ar-
ray of rods with the
relative lattice spa-
cing b:I.Z;

Re= 2.48.I0%.

[ . }
o
w7 5 8 2 b 6 b ) L Re

Fig.II Computed resistance coefficients f for the cells of tri-
angular and quadratic array of rods for different lattice
spacing h . I,2,3-triangular array h=I.0; I.I; I.2;
4-circular pipe; 5-the quadratic lattice cell with h=I.O.
Experimental gurves. 6,7-triangular array with_h=I1.0 I4
and h=I.2 [I3| . 8-quadratic array with h=I.0 [ I4]| .

(B B0 0°

T ,

Fig.I2 An example of computing

the ionless temperature

di s
G=—J\~%§§5 at the surface of

fuel rod in the cell of tri le
lattice with the ,gpacing h=T.0;
PI‘:0.025; Re=5.IO .

SR N — The additional explanations are
given in the text;
S I-the results of the calculation

! N 2-the results of the measure-
Y I DN ments [ I6].
‘ 7\\\-
v s " o n :!s r f' 129 =

~20~-
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